UserDefinedMetrics Processor
Overview
The UserDefinedMetrics
processor allows users to extract specific values from event payloads and record them as custom metrics. These metrics can be leveraged for monitoring, analytics, and operational insights. The processor supports multiple configuration options to provide flexibility in data extraction and transformation.
Input and Output
This processor operates on both the request and response streams:
-
Input Stream:
Request/Response
– The processor listens to requests and responses, extracting relevant data based on user-defined rules. -
Output Stream:
Request/Response
– The processor does not alter or block the flow; instead, it logs the extracted metrics and passes the event through unchanged.
This ensures that metrics are collected while allowing the request or response to continue through the processing pipeline without disruption.
Parameters
Each parameter is defined as a key-value pair inside the parameters
section.
metric_name
Required: True
Type: string
Defines the name of the metric to be exposed. This can be any string.
Example:
- key: metric_name
value: "total_tokens"
metric_type
Required: False
Type: string
Default: counter
Specifies the type of metric. Supported types: counter
, up_down_counter
, gauge
, histogram
.
Example:
- key: metric_type
value: "histogram"
metric_value
Required: False
Type: string
Default: counter
Determines the value to track for the metric. Can be predefined values like api_call_count
, api_call_size
, or a JSON path to extract data from requests or responses (e.g., $.response.body.errors.count
). If extracting matrics from a JSON path, the value must be numeric.
Example:
- key: metric_value
value: "$.response.body.usage.total_tokens"
custom_metric_labels
Required: False
Type: map_of_strings
Defines a map of custom label name/value pairs for additional metric tagging. The value can be extracted from headers or payloads (e.g., $['headers']['lunar-custom-context']
).
Example:
- key: custom_metric_labels
value:
"x-lunar-context": "$.response.body.x-lunar-temp-context"
"x-lunar-special-context": "$.response.header.x-lunar-special-context"
labels
Required: False
Type: list of strings
(Default: []
)
Defines a list of labels that can be used to add context to metrics. These labels can include predefined values or JSON paths to extract data from request bodies or headers.
Common labels include:
Label Name | Description |
---|---|
http_method | The HTTP method used in the request. |
url ⚠️ | The request URL. |
host | The request host name. |
status_code | The HTTP response status code. |
consumer_tag | Identifier for the consuming entity. |
When using the label URL
on a flow with multiple different urls the metrics exposed by Lunar.dev will be inflated.
Example:
- key: labels
value:
- "consumer_tag"
- "$.response.body.error.type"
buckets
Required: False
Type: list of numbers
(Default: []
)
Defines threshold values for histogram
metrics. This parameter is required if metric_type
is set to histogram
.
Example:
- key: buckets
value: [0, 100, 250, 500, 1000, 2500, 5000, 10000]
Best Practices
- Use a descriptive
metric_name
to simplify analysis. - Ensure
metric_value
accurately represents the data being measured. - Define meaningful
labels
to provide context for the metric. - When using
histogram
, carefully choosebuckets
to match expected data distributions.
For more details on configuring flows, visit the Lunar.dev Flows Documentation.
User Defined Metrics Processor Template
RequestMetrics: # Collect custom metrics for API requests
processor: UserDefinedMetrics
parameters:
- key: metric_name
value: "call_size" # Name of the metric to track
- key: metric_type
value: "histogram" # Metric type (e.g., histogram)
- key: metric_value
value: "api_call_size" # Metric value based on request size
- key: labels
value:
- "http_method" # Label for HTTP method
- "consumer_tag" # Label for consumer tag
- key: buckets
value: # Define the histogram buckets
- 0
- 100
- 250
- 500
- 1000
- 2500
- 5000
- 10000
Use Case
You can use the UserDefinedMetrics
Processor to monitor calls to OpenAI by model using the following configuration:
ResponseMetrics:
processor: UserDefinedMetrics
parameters:
- key: metric_name
value: "total_tokens"
- key: metric_type
value: "counter"
- key: metric_value
value: $.response.body.usage.total_tokens
- key: custom_metric_label
value: "model"
- key: custom_metric_label_value
value: $.request.body.model
- key: labels
value:
- "consumer_tag"
The result of this processor will return the count of tokens, the OpenAI model used, Lunar.dev Gateway ID, Lunar.dev Instance and Lunar.dev Job.
lunar_total_tokens_total{gateway_id="gateway-mUXVRT7vSkIM40jf", instance="lunar-proxy", job="lunar-proxy", model="gpt-4o"} 585