Skip to main content
Version: Next

UserDefinedMetrics Processor

Overview

The UserDefinedMetrics processor allows users to extract specific values from event payloads and record them as custom metrics. These metrics can be leveraged for monitoring, analytics, and operational insights. The processor supports multiple configuration options to provide flexibility in data extraction and transformation.

UserDefinedMetrics


Input and Output

This processor operates on both the request and response streams:

  • Input Stream: Request/Response – The processor listens to requests and responses, extracting relevant data based on user-defined rules.

  • Output Stream: Request/Response – The processor does not alter or block the flow; instead, it logs the extracted metrics and passes the event through unchanged.

This ensures that metrics are collected while allowing the request or response to continue through the processing pipeline without disruption.


Parameters

Each parameter is defined as a key-value pair inside the parameters section.

metric_name

Required: True
Type: string
Defines the name of the metric to be exposed. This can be any string.

Example:

- key: metric_name
value: "total_tokens"

metric_type

Required: False
Type: string
Default: counter
Specifies the type of metric. Supported types: counter, up_down_counter, gauge, histogram.

Example:

- key: metric_type
value: "histogram"

metric_value

Required: False
Type: string
Default: counter
Determines the value to track for the metric. Can be predefined values like api_call_count, api_call_size, or a JSON path to extract data from requests or responses (e.g., $.response.body.errors.count). If extracting matrics from a JSON path, the value must be numeric.

Example:

- key: metric_value
value: "$.response.body.usage.total_tokens"

custom_metric_labels

Required: False
Type: map_of_strings
Defines a map of custom label name/value pairs for additional metric tagging. The value can be extracted from headers or payloads (e.g., $['headers']['lunar-custom-context']).

Example:

- key: custom_metric_labels
value:
"x-lunar-context": "$.response.body.x-lunar-temp-context"
"x-lunar-special-context": "$.response.header.x-lunar-special-context"

labels

Required: False
Type: list of strings (Default: [])
Defines a list of labels that can be used to add context to metrics. These labels can include predefined values or JSON paths to extract data from request bodies or headers.

Common labels include:

Label NameDescription
http_methodThe HTTP method used in the request.
url ⚠️The request URL.
hostThe request host name.
status_codeThe HTTP response status code.
consumer_tagIdentifier for the consuming entity.
URL

When using the label URL on a flow with multiple different urls the metrics exposed by Lunar.dev will be inflated.

Example:

- key: labels
value:
- "consumer_tag"
- "$.response.body.error.type"

buckets

Required: False
Type: list of numbers (Default: [])
Defines threshold values for histogram metrics. This parameter is required if metric_type is set to histogram.

Example:

- key: buckets
value: [0, 100, 250, 500, 1000, 2500, 5000, 10000]

Best Practices

  • Use a descriptive metric_name to simplify analysis.
  • Ensure metric_value accurately represents the data being measured.
  • Define meaningful labels to provide context for the metric.
  • When using histogram, carefully choose buckets to match expected data distributions.

For more details on configuring flows, visit the Lunar.dev Flows Documentation.


User Defined Metrics Processor Template

Custom Metrics Processors
  RequestMetrics: # Collect custom metrics for API requests
processor: UserDefinedMetrics
parameters:
- key: metric_name
value: "call_size" # Name of the metric to track
- key: metric_type
value: "histogram" # Metric type (e.g., histogram)
- key: metric_value
value: "api_call_size" # Metric value based on request size
- key: labels
value:
- "http_method" # Label for HTTP method
- "consumer_tag" # Label for consumer tag
- key: buckets
value: # Define the histogram buckets
- 0
- 100
- 250
- 500
- 1000
- 2500
- 5000
- 10000

Use Case

You can use the UserDefinedMetrics Processor to monitor calls to OpenAI by model using the following configuration:

  ResponseMetrics:
processor: UserDefinedMetrics
parameters:
- key: metric_name
value: "total_tokens"
- key: metric_type
value: "counter"
- key: metric_value
value: $.response.body.usage.total_tokens
- key: custom_metric_label
value: "model"
- key: custom_metric_label_value
value: $.request.body.model
- key: labels
value:
- "consumer_tag"

The result of this processor will return the count of tokens, the OpenAI model used, Lunar.dev Gateway ID, Lunar.dev Instance and Lunar.dev Job.

lunar_total_tokens_total{gateway_id="gateway-mUXVRT7vSkIM40jf", instance="lunar-proxy", job="lunar-proxy", model="gpt-4o"} 585